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By suitably combining the uniformly driven lattice gas and the two-temperature 
kinetic Ising model, we obtain a generalized model that allows us to probe a 
variety of nonequilibrium phase transitions, including a type not previously 
observed. This new type of transition involves "longitudinally ordered" steady 
states, which are phase-segragated states with interface normals parallel to the 
drive. Using computer simulations on a two-dimensional lattice gas, we map out 
the structure of the phase diagram, and the nature of the transitions, in the 
three-dimensional space of the drive and the two temperatures. While recovering 
anticipated results in most cases, we find one surprise, namely, that the 
transition from disorder to longitudinal order is continuous. Unless it turns out 
to be very weakly first order, this result is inconsistent with the expectation of 
field-theoretic renormalization group calculations. 

KEY WORDS: Driven diffusive system; nonequilibrium steady states; lattice 
gas; Monte Carlo simulations; phase transitions. 

1. I N T R O D U C T I O N  

Phase  t rans i t ions  assoc ia ted  wi th  n o n - e q u i l i b r i u m  s teady states are  m u c h  
m o r e  c o m p l e x  than  those  tha t  occu r  in equ i l ib r ium,  and  have  recent ly  

received a lot  o f  a t ten t ion .  2 Sys tems exhib i t ing  such t rans i t ions  are  d r iven  

away  f rom equ i l i b r i um by va r ious  ex te rna l  forces and  sett le in to  a t ime-  
i n d e p e n d e n t  s ta te  w h o s e  p robab i l i t y  d i s t r ibu t ion  is n o t  s imply  g iven  by the  

usual  B o l t z m a n n  factor ,  bu t  also depends  on  the detai ls  o f  the dynamics  

which  con t ro l  the  evolu t ion .  

Center for Stochastic Processes in Science and Engineering and Department of Physics, 
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0435. 

2 See, e.g., Ref. 1 for review of a variety of nonequilibrium systems such as self-organized 
criticality, kinetic roughening of interfaces, etc. 
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One simple example of such a system is the driven diffusive Ising 
model c2) (see Ref. 3 for a recent review), which consists of an ordinary 
lattice gas with nearest-neighbor interactions evolving with Kawasaki 
dynamics (4) that are biased by an external field E so that particles (holes) 
prefer to move along (against) the field. Imposing periodic boundary condi- 
tions, we find that the system eventually settles into a nonequilibrium 
stationary state with a nontrivial steady particle current. Like its equi- 
librium counterpart, this model undergoes a continuous order-disorder 
transition. At high temperatures, the system is in a disordered, 
homogeneous phase, while at low temperatures, it is in an inhomogeneous 
phase, where particle-rich and particle-poor regions coexist. However, 
unlike the equilibrium Ising model, in this model the interfaces between 
such regions are invariably aligned "parallel to the field," i.e., their normal 
vectors are orthogonal to the field. 

Two closely related models are (i) the above system driven with an 
annealed random field (5) and (ii) the diffusive, two-temperature kinetic Ising 
model. (6-s) They are believed to be so similar that, for simplicity, we will 
focus only on one version: the latter. Here, one of the d dimensions of a 
hypercubic lattice is singled out and referred to as the "parallel" or 
"longitudinal" direction, while the other d - 1  directions are labeled 
"perpendicular" or "transverse." On this lattice, we place an ordinary 
Ising model with isotropic and uniform nearest-neighbor interactions. The 
novelty lies in the dynamics, which involves Kawasaki exchanges coupled 
to two different heat baths that in general are at different temperatures. 
Specifically, particle moves in the parallel direction are governed by trans- 
ition rates appropriate for being in contact with a reservoir at temperature 
l/flu, while moves in perpendicular directions are controlled similarly by 
an inverse temperature fl• If flu =f l •  the model reduces to the familiar 
Ising lattice gas, and eventually settles into the equilibrium state. However, 
if fill ~ fl• the system experiences an energy flux, from the bath with higher 
temperature to the lower one, and thus settles into a nonequilibrium steady 
state. As a result, neither time reversal nor detailed balance holds in this 
type of stationary state, even if the nearest-neighbor interactions were 
anisotropic. For small fl's, this state is homogeneous and disordered. At 
large fl's, the system phase segragates into lattice-spanning regions of 
high/low particle concentration in one of two ways, distinguished by the 
orientation of the interfaces between such regions. Specifically, the normal 
of the interfaces will lie in the subspace corresponding to the larger ft. 
Referring to the phase diagram (7) in the fl• plane (Fig. 1 ), we describe 
these two phases as "transverse order" if fl• > flu and "longitudinal order" 
if otherwise. The transitions between the disordered and the ordered phases 
are continuous, while between the two ordered states, the transition is 
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Fig. I. Schematic phase diagram of the d= 2 diffusive two-temperature Ising model (n) Two 
different ordered phases, shown schematically in the insets, are separated by a line of first- 
order transitions (indicated by the dashed line). Between each of these and the disordered 
phase are lines of continuous transitions (indicated by solid lines). All phases meet at a 
bicritical point (indicated by the open circle), which corresponds to Onsager's critical point. 

first-order. Both of the critical lines meet the first-order line at the Onsager 
point of the equilibrium Ising model (indicated by O in Fig. 1), which 
naturally leads to its being labeled a bieritical point. 

In this paper, Monte Carlo simulations are used to study the effects of 
combining these two type of drives on the Ising lattice gas. Apart from the 
intrinsic interest in the three-dimensional (E, flj_, fill) phase diagram, we 
are motivated to find a microscopic lattice dynamics for testing a model 
first studied within the context of continuum field theories for which a first- 
order transition was predicted/9) 

The remainder of this paper is organized as follows. In the next 
section, we review the predictions of dynamic renormalization-group field 
theories, with the main focus on the case mentioned in the previous 
paragraph. In See. 3, we introduce the driven lattice gas, coupled to two 
different thermal baths, examine its relationship with the field-theoretic 
model, and discuss the details of the simulations. The results of the simula- 
tions are then described in See. 4. Finally, See. 5 contains a summary and 
suggestions for further study. 

2. REVIEW OF CONTINUUM FIELD-THEORETIC MODELS 

Soon after the standard driven lattice gas (2) was introduced, a dynamic 
field-theoretic description (9,1~ of its second-order phase transition was 
proposed. The starting point is the Langevin equation for an Ising model 
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with a conserved dynamics, i.e., Model-B in the language of Halperin and 
Hohenberg(i 1) 

 7=zv -aT-+ q (1) 

In this equation, ~b(x, t) is a coarse-grained scalar order parameter, with 

1 1 2 1 4 
Yt~[~b] =f ~(V~bl2+~v~b +~gq~ (2) 

being a Landau-Ginzburg-Wilson Hamiltonian. The effects of the 
conserved noise are modeled by q(x, t), a Gaussian with zero mean and 

(q(x, t) q(x', t ' ) )  = 226(t - t') V2~(x -- x ')  

The temperature dependence of the model is contained most essentially in 
r, with r--* 0 as the signal for criticality. 

When an external drive is added to the system, (2) must be modified 
accordingly. The most obvious difference is the presence of an ohmic 
current which is set up in the steady state. Since Eq. (1) is in the form of 
a continuity equation, we may simply add a term to the right-hand side of 
the form - V . a ( ~ ) E ,  with a(~) being a density-dependent conductivity. 
Taking into account the excluded-volume constraint and writing a coarse- 
grained parameter for the drive (in place of the microscopic E), we find 
that the extra term is garb 2, where 0 indicates a gradient operator in the 
direction of the drive. Another important effect was then recognized, (9"1~ 
namely, that such a term renormalizes only those couplings in (1) which 
involve a. As a result, it is vital to replace ( 1 ) by a fully anisotropic version. 
The final equation is 

~"~t = ~ I ('/1"_1. V L "1- ~'1] 02) ~b -- (0t.A_ V 4 .-[- 2~x ~2V 2 --[- 0t.[[ 04) ~ 

+~.. (g-L V2 + glt 02) ~ b3 "~ g0~2-[-q-l- "{-/'/ll (3) 

where V• indicates the gradient operator for the subspace transverse to 
the field. Note that the noise term has also become anisotropic, with 
correlations 

(n . (x ,  t) r/.(x', t ' ) )  = 22.6(t  - t') V2, 6(x - x') (4a) 

and 

(nu(x, t) r/u(X', t ' ))  = 22Mi6(t- t') 026(x - x ' )  (4b) 
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Keeping in mind that r played the role of temperature, the presence of 3• 
and 3it indicate that the system may be interpreted as being coupled to two 
thermal baths set at two different "temperatures." This somewhat unusual 
concept in fact makes good physical sense. Since the drive acts as an addi- 
tional source of energy, jumps parallel to the field effectively experience a 
higher "temperature." Simple perturbation theory confirms this inter- 
pretation in the sense that, at the lowest order, a g2 term is added to the 
coefficient of 02~. Thus, we are naturally led to the conclusion that, in the 
standard driven lattice gas, 3• will vanish first with 311 > 0, as T is lowered 
to T c. Meanwhile, the correlation of the noise is also modified and, given 
that detailed balance is typically absent in nonequilibrium systems, the 
ratio 2• u is no longer constrained by the fluctuation-dissipation theorem 
(FDT) to be "~'_L/3II ,(9'12) although both 2's remain positive at To. Using 
this ansatz and renormalization group techniques gives the upper critical 
dimension for this theory dc to be 5, and a stable nontrivial fixed point and 
its associated exponents were obtained (9) in an expansion in powers of 
( 5 - d ) .  Subsequently, extensive simulation data largely confirmed these 
predictions.(~3) 

Given that there are two 3's, there is no theoretical reason for studying 
only the above case. Examining the remaining cases, two other results 
emerged. (9'~~ If both 3's vanish simultaneously, d c turns out to be 8 with 
a stable nontrivial fixed point in d <  8. If, on the other hand, we let 3 u --* 0 
with 3• > 0, dc becomes 4.5, with no stable fixed point in d <  de. This result, 
along with the existence of a particular inhomogeneous solution to (3) at 
positive 31t (in infinite system without free boundary conditions), was used 
as an argument for this transition being of first order. (9) However, up to 
this point, it has been unclear how these statements could be tested. Part 
of the purpose of this work is to introduce the microscopic dynamical 
model which most likely corresponds to this continuum theory. 

While (3) is appropriate for systems with a nonvanishing steady-state 
current, it is clearly incorrect for systems driven with random fields or by 
two temperature baths. For those cases, it was argued (5) that only the 
ohmic term, ~0~b 2, needs to be dropped. The reasoning is that, apart from 
this current, all the conditions for modifying (2) to arrive at (3) are still 
valid. In particular, the two-3 description, which allows only one 3 to 
vanish at criticality, lends itself naturally to the two-temperature 
models. (6-8) In fact, in most simulation studies, either the higher tem- 
perature or the magnitude of the annealed random field is kept at infinity. 
Furthermore, having FDT-violating noise is entirely suitable, given the 
nonequilibrium nature of these models. Of course, the absence of ~0~b 2 
means that these theories no longer belong to the same universality 
class as the uniformly driven system. (5) Recent simulation data on d = 2  
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lattices Cs) are consistent with these predicions. Having o ~ = 0 also implies that 
the differences between the three cases--letting r L, rll, or both vanish--are 
less dramatic, in the following sense. The first two cases are the same except 
for an exchange in the labeling transverse ~ 1, so that there is an obvious 
symmetry in d =  2/7) In the last case, if it is to model the two-temperature 
lattice gas, it would simply be an equilibrium system. On the other hand, 
there is no reason, in principle, to study only the FDT-respecting case, 
i.e., one with g•215 We are not aware of 
any investigations of such theories and will not address this issue further 
here. 

Summarizing the status of continuum theories, most of the known 
varieties of driven diffusive systems can be retrieved from Eq. (3) by going 
to various regions of its parameter space. Restricting to the domain of 
positive 0o's and g's, one large region has not been realized by microscopic 
models: r ~ 0 and r•  > rll" In the next section, we present a lattice model 
which we argue should be the realization of this continuum theory. 
Renormalization group analyses lead to the conclusion that, as ril is 
lowered, this system will undergo a first-order transition from a 
homogeneous to a phase-segregated state. However, we will present 
simulation data that indicate that the transition of the lattice model, at 
least in d = 2, is continuous. 

3. MODEL DEFINITION 

Our model consists of either a particle or a hole at each site of an 
L x L square lattice. Due to computational limitations, we restrict ourselves 
to d =  2 here; but there are no conceptual difficulties with generalizations 
to hypercubic lattices in higher dimensions. A nearest-neighbor attractive 
interaction between the particles is present. In the Ising language, a 
particle/hole is a positive/negative spin t~, with ferromagnetic interactions. 
The lattice gas and spin languages will be used interchangeably. We lable 
a site by x - ( x . , x l l )  and fix the boundary condition to be periodic. 
Choosing the interaction strength appropriately, we obtain the energy of a 
configuration 

~ ~  a(y) (5) 

where tr = _+ 1, and the sum is over nearest-neighbor sites x and y. 
Since we are interested in models whose dynamics conserve the num- 

ber of particles, i.e., the total magnetization in the spin language, we choose 
to allow the system to evolve with Kawasaki spin exchanges between 
randomly chosen pairs of nearest-neighbor lattice sites. To define a general 
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two-temperature driven system, we let spin exchanges in the "parallel" 
direction occur at an inverse temperature flit and those in the "transverse" 
direction occur at f •  Additionally, we apply a driving field E which points 
in the "parallel" direction. As in the standard model, the field biases spin 
exchanges in favor of a positive (negative) spin moving along (against) the 
field direction. For simplicity, we choose the Monte Carlo rates of the 
microscopic dynamics to be Metropolis', so that the probability that a 
given pair of spins will exchange position in the perpendicular direction is 
given by the standard form t'4) 

W• = min{ I, exp[ - f •  A~/f] } (6a) 

and, in the parallel direction, the effect of the field is incorporated 
through (2) 

Wit = min{ 1, exp[ --fit(A~r ~ + eE)] } (6b) 

where e = + 1 ( -  1) for an exchange attempting to move a positive spin 
against (along) the field. 

Thus, the parameter space of our model is three dimensional: 
(E, f•  In the subspace E = 0  lies the two-temperature model, (6-8) 
while the f •  = f i t  subspace refers to the standard driven lattice gas. ~3~ In 
principle, a coarse-graining procedure should lead us to the mesoscopic 
theory (3), with the parameters of the latter being functions of E, f •  and 
ftt- In practice, these functions cannot be computed and we have little 
choice but to resort to making "educated guesses" at their general proper- 
ties. Regarding this process as semiphenomenological and relying on the 
principles of universality, we make progress toward the understanding of 
these systems in the long-wavelength limit. In this spirit, we expect the 
following inequalities: 

z• = 0, f t . ,  fltl) > rll ( E =  0, ti.L, fill) 

r• fl• fll) < rll(E, f• fll) 

r• f• fll) > rll( E, f• fll) 

The first comes from previous studies (5) of the 
the parameter r is a monotonic measure of the 
that thermal bath. The second is, as discussed 

if and on/y , f  fl• (7a) 

if Er177 I (7b) 

if Ev~Oandfl• ~fll I (8) 

two-temperature model, i.e., 
temperature associated with 
in the previous section, the 

effect of the drive on rtt. Combining these two arguments, we at last arrive 
at our proposed microscopic model for the untested region: ~ ~ 0 with 
3• > vii. In particular, we expect that the effects of the drive o n  -ell cannot 
reverse the inequality ~• > rtt, provided E is not too excessive and the 
transverse thermal bath is sufficiently "hotter" than the longitudinal one. 
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Since the total magnetization is conserved by the dynamics, the 
transition from disorder to order is displayed as phase separation, so that 
"generalized magnetizations ''(z) must be used for order parameters. For 
simplicity, in this study we restricted the total magnetization to zero, 
corresponding to a half-filled lattice. Expecting two different types of 
ordering, transverse and longitudinal, we define 

and 

m_t -- C ~ e 'z"xi/L ~. a(x.L, x11) 
x •  Xll 

(9a) 

mll - C ~ e '2"x"/L ~ a (x•  Xll ) (9b) 
X l ]  

Fig. 2. 
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Probability distributions of rn~l for an L = 1 6  system, with E=4,  f l j .=0,  and 
fl1r (a), 0.54 (b), 0.56 (c), and 0.58 (d). 
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where the normalization constant 

C -  { 2 [  1 - -  cos(2~/L) ] } '/2/(4L) (10) 

is defined so that, for a perfectly transversely (longitudinally) ordered 
configuration, m• (mum) is unity while the other one is zero. However, for 
random configurations, both m's vanish, in the thermodynamic limit. In 
this sense, they are suitable for measuring the degree of both types of order. 

During the course of a simulation run we periodically measure m 2 and 
m~i and then construct histograms of their values, which, when properly 
normalized, are the steady-state probability distributions P(m~) and 
P(m~t). These histrograms contain considerable information and allow us 
to determine the phase of the system. Combined with a finite-size analysis, 
they also allow us to determine the location and order of phase transitions. 

To obtain a qualitative picture of the phase diagram, we first 
monitored the simulations in real time. This also enabled us to observe the 
various processes, such as ordering dynamics. Then, long runs were carried 
out and quantitative measurements made. In these, the system sizes range 
from L = 8 to L = 32, while the length of the runs varied with system size, 

Fig. 3. 
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Probability distributions of ,'n~l for an L = 24 system, with the same set of values for 
(E, P i ,  PrO as in Fig. 2. 
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typically from 4 x 105 Monte  Carlo sweeps (MCS)  for L = 8  systems to 
3 x 106 MCS for L = 32 systems. The frequency of our  measurement  of  the 
order parameters  also depended on the size of  our system and typically 
ranged from every 4 MCS for L = 8 systems to every 30 MCS for L = 32 
systems. The data  from the first 10% of each run (sometimes more)  were 
discarded to allow the system to reach a steady state. 

We begin our  discussion of the simulation results with the study of  the 
effects of the field E on the transition to longitudinal order. We start  by 
restricting ourselves to the hottest  "transverse" ba th  possible, i.e., fl• = 0. In 
the undriven case ( E = 0 ) ,  the transition occurring at f l l l c -0 .33  is known 
to be continuous,  (s> in agreement  with field-theoretic predict ionsJ 5> 
However,  according to the theory, once a uniform driving field is applied, 
the transition should change to first-order. (9) To check this prediction, we 
imposed a field of  strength E = 4  on lattices with L =  16, 24, and 32. 
Simulating these systems at various flit, we measured P(m~l ). The results 
are shown in Figs. 2--4. In all three cases, we see that, for flil <0.54,  the 
distribution has a single peak, with a m a x i m u m  at m~l = 0. However ,  at 
f l t l -  0.54, this single max imum begins to shift, continuously, to positive 
values of  m~i. We interpret this behavior  as a clear indication that  the 
transition is continuous rather  than first-order. 

' 13 .  

Fig. 4. 
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Probability distributions of m~l for an L = 32 system, with the same set of values for 
(E, ft., flit) as in Fig. 2. 
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At still larger values of flil, we observe a curious effect which mimics 
a first-order transition. As fill is increased, a second peak develops in 
P(m~i ), with maximum at m~l = 1. As flJi is raised further, the amplitude of 
the first peak decreases while the height of the new one increases. See 
Fig. 5. This process continues until the first peak disappears entirely, so 
that the distribution is again single-peaked, with maximum at unit m~i. The 
presence of a double-peaked P is indicative of a first-order transition, if it 
were to hold for an infinitely large system. However, as shown in Fig. 6, if 
we hold fill constant and increase L, then the amplitude of the second peak 
decreases. Alternatively, the temperature at which the two peaks are of 
equal height decreases with system size. We conjecture that this curious 
phenomenon disappears as L ~ ~ ,  so that there is no true first-order 
transition. 

Based on observations in real time, the mechanism responsible for this 
effect can be described as follows. For large fl, particles (positive spins) 
tend to cluster due to the attractive interactions. On the other hand, the 
effect of the E field is to drive them out, through the "downstream" edge 
of the cluster. (For example, a part of such an edge is displayed in Fig. 7). 
Of course, on the average, we cannot expect this kind of interface to be 

Fig. 5. 
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Probability distributions of rn~l for an L=I6 system, with E=4, p• and 
~qi =0.60 (a), 0.62 (b), 0.64 (c), and 0.68 (d). 
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Fig. 6. Probability distributions of m~r for systems with E = 4 ,  fix=O, and fill=0.70, for 
L = 16 (a), 24 (b), and 32 (c). 

microscopically flat, i.e., solidly filled on one side and totally empty  on the 
other. However,  once a flat one is form, then it can be quite stable, 
provided E is not excessively large. In particular,  if a flat interface stretches 
across the system, it will typically persist for some time, often allowing all 
of  the particles in the system to "fill in" behind it so that  a perfectly ordered 
state is achieved. These are the configurations for which rnml = 1 and are 

m m m m m m m m m  

m m m m m m m m m  

m m m m m m m m m  

m m m m m ~ m m m  

n u m m o  omm 

m m m m m m m m m  

m m m m m m m m m  

n m m m m m m m m  

m m m m ~ o m m m  

m u m |  omm 

Fig. 7. 

(a) (b) 

An illustration of the effects of the drive on a "downstream" edge with a single hole 
(a). If E >  8, a particle can be driven out (b), and an avalanche ensures. 
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Fig. 8. Phase diagram of the driven, diffusive two-temperature ]sing model in the p. = 0 
plane of the three-dimensional parameter space (E, fl• ill[). The solid circles indicate the 
approximate location of the continuous transition as measured in the simulations. The curve 
is drawn as a guide to the eye, reflecting the simulation data, and the fact that no longitudinal 
order can exist for E > 8. 

responsible for the appearance of the second peak in P(m~l). For a finite 
system, the probability for a fiat interface to stretch across the lattice is 
nonzero. Thus, the amplitude of the second peak is presumably a delicate 
function of this probability and the lifetime of such an edge. However, it 
seems reasonable that both rates decrease with L, so that this phenomenon 
never occurs in the limit L ~ ~ .  

We have used the phrase "not excessively large" several times in con- 
nection with E. To be quantitative, it is trivial to see that no longitudinal 
order is possible if E>~ 12, since fields of this strength can tear any particle 
out of a perfectly ordered state. A more sophisticated argument 3 shows, 
however, that E = 8 is the generic limit of stability. In particular, consider 
a perfectly ordered state except for a single hole along the "downstream" 
edge (Fig. 7a), which may originate from a temperature fluctuation, an 
infinitesimal deviation from being half-filled, or an impurity. Now, it is 
clear that the two corner particles, denoted by (3, can be detached from 
the bulk if E > 8. Actually, E > 4 is enough to move another particle ( |  
at this stage. But it cannot proceed beyond the next step unless E > 8. Once 
the comer  particle is detached (Fig. 7b), two others ( | ) are now suscep- 
tible to the smaller bound: E >  4, while two ( O )  can be torn out by 

3A version of the argument presented here, originally due to H. van Beijeren (private 
communication), was used to showed the limit of the ordered phase in a driven diffusive 
lattice gas with repulsive interparticle interactions. (~5) 
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the  larger  E >  8. Thus ,  an  ava l anche  ensues  a n d  the o rde red  s ta te  is 
des t royed.  

To  test this a r g u m e n t  and  to exp lore  the effects o f  o the r  field s t rengths ,  

we repea ted  the  a b o v e  s tudy  wi th  E =  2, 6, and  9. F o r  E =  2 and  6, we 

observed  s imilar  results  as the  E = 4 case, except  tha t  the  c o n t i n u o u s  t ran-  

s i t ion occur red  at different va lues  of  ill I . H o w e v e r ,  for E =  9 no  o rde r ing  was  

(a) 

Longitudinal Order 

~ ~ T r a n s v e r s e  Order 
Disorder / 

(b) 

Disorder 

Transverse Order 

(c) 

Disorder Transverse Order 

Fig. 9. Schematic phase diagram of the driven, diffusive two-temperature Ising model in the 
parameter space (E, fl• fill)' presented in terms of various cross sections of constant E: 
(a) E=0,  (b) 8 > E, and (c) E>  8. The transitions from disorder to either ordered phase, 
indicated by solid lines, are continuous. However, the transition from disorder to longitudinal 
order, predicted to be first order by field theory, (9) may turn discontinuous in d>~ 3, in the 
manner of the three-state Potts model. The dashed line indicates first-order transitions and the 
open circle is the bicritical point. 
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ever observed, confirming E = 8 as the limit of longitudinal order. Noting 
that the transition in the E = 0 case occurs at about fill ~ 0.33, we may use 
these results to plot a phase diagram in the (E, fltt, fl• = 0) plane, shown 
in Fig. 8. That flllc increases with E is to be expected, since E encourages 
transverse order, as evidenced by the behavior of the standard model. Cz) 

We have performed similar analyses for the transition to transverse 
order. As expected from theory, they show that that transition remains 
continuous. For example, if we vary fl• while fixing fltt = 0  and E > 0 ,  we 
find P(m~) to have only one peak. For small fl• the maximum is located 
at m~. = 0. As it increases beyond a certain critical value fl• the location 
of this maximum shifts continuously from 0 to positive values. As /?• a 
approaches infinity, these values increase monotonically toward unity. No 
second peak develops for any L. However, in contrast to the transition to 
longitudinal order, ~• decreases with increasing E for any ]?~l" As E ~ oo, 
it reaches a value of about 1/3, which corresponds to the critical point in 
the standard model with infinite E. (2) That correspondence is due to the 
trivial fact that l i m e _ ~  E,8~ = co for any fill > 0, so that the rate (6b) 
becomes min{ 1, 0} regardless of fill. 

Finally, we turn to the question of how the drive affects the bicritical 
structure in the phase diagram of the two-temperature model. Our results, 
which are summarized in Fig. 9, indicate that the general features remain 
the same, provided E <  8, i.e., two critical lines meet a third line of first- 
order transitions. The former mark the boundaries between the disordered 
phase and each of the two ordered phases, which are separated by the lat- 
ter line. The only effect of the field is a shift in the longitudinal (transverse) 
critical line to larger fltt (smaller fl• Of course, the location of the 
bicritical point is shifted similarly. As E approaches 8, the transverse line 
remains at positive fl• while the longitudinal crticial line recedes to 
~11= oo, confirming the lack of longitudinal order for E>~8. Finally, as 
noted above, in the limit E ~  ~ ,  the phase diagram consists of a single 
straight critical line at fl• - 0.33. 

5. C O N C L U S I O N S  A N D  O U T L O O K  

Using Monte Carlo simulations, we studied the nonequilibrium steady 
states of an Ising lattice gas driven by a combination of a uniform external 
field (E) and b~ing coupled to two thermal reservoirs at different tem- 
peratures (flff~ and f i r  t). In previous studies, two planes in this three- 
dimensional parameter space have been mapped out, i.e., the fill =f l •  
case (2) and the E = 0  model, c7) For the general model, we find that when 
E>~ 8 there are only two phases: the disordered and the transverse ordered 
one, and that the transition between them is continuous. On the other 
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hand, for E < 8 ,  the bicritical structure on the E = 0  plane persists 
qualitatively. In particular, the transitions from the disordered state to both 
types of ordered states remain continuous. While this result is expected for 
the transition to transverse order, it is rather surprising for the transition 
to longitudinal order, which was conjectured (9) to be first-order through 
a renormalization group analysis. However, this type of disagreement 
between field-theoretic results from the e-expansion and simulation data is 
not novel. A well-known example is the Potts model. 4 In d =  2, the phase 
transitions in both the three- and four-state models are known to be 
continuous, while field-theoretic techniques find none other than first-order 
transitions. Of course, in that case, it was argued that there is no genuine 
contradiction, since d = 2 is "quite far" from the upper critical dimension 
of 6. The general belief is that the effects of the long-wavelength fluctuations 
are more pronounced in lower dimensions, so that the susceptibility 
diverges and a second-order transition is induced. It is surely sorthwhile to 
explore if the same mechanism is at play in our case. 

Apart from this issue, many others remains to be investigated. For 
example, the universality classes of all the continuous transitions could be 
established through careful finite-size analyses. We could test the expecta- 
tion that the transitions to transverse order will remain in the class of the 
standard driven model. (9~ For transitions to longitudinal order, any result 
will be "new," since there are no predictions or measurements of those 
critical properties at present. Similarly, the neighborhood of the bicritical 
point will yield novel information, as it will have a nonequilibrium 
character. A detailed study of the mechanism leading to the states with 
perfect longitudinal order and the properties of the associated second peak 
in P(m~t ) would be most interesting. Further, there may be more exotic 
transitions if we study systems with nonzero total magnetization, since the 
ordered state is likely to drift with a constant velocity. Beyond such 
"steady-state" phenomena, it is natural to study the behavior after a 
quench, e.g., nucleation, growth of ordered domains, and dynamic scaling. 
Clearly, this model presents us with many rich possibilities. 
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4 For a review of the equilibrium Potts model see, e.g., ref. 16. 
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